8:00 am - 5:00 pm	Po	oster Friday, October 23, 20	015	4th floor
Session P1B1. Elasticity Imaging Methods	P1B1-8 Spatial Variance Induced by Tissue Compression in Ultrasound Shear Wave Imaging	P1B2-4 Ultrasound-enhanced extravasation of dual-modality multifunctional nanodroplets	P1B3-4 Effects of coherent compounding on Pulse Wave Imaging (PWI) in phantoms and <i>in vivo</i>	P1B4-4 Copolymer-in-oil phantoms for photoacoustic imaging
Chair: Hendrik Hansen Radboud University Medical Center	Hideki Yoshikawa ¹ , Teruyuki Sonoyama ² , Noriaki Inoue ² , Ken-ichi Kawabata ¹ ¹ Hitachi, Ltd., Tokyo, Japan, ² Engineering R&D Department 1, Hitachi Aloka Medical,Ltd., Tokyo, Japan	Yujin Zong ¹ , Xinru Zou ¹ , Rongrong Wang ¹ , Yi Feng ¹ , Xuan Du ¹ , Mingxi Wan ¹ ¹ The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China, People's Republic of	Iason Zacharias Apostolakis ¹ , Ronny Li ¹ , Matthew McGarry ¹ , Ethan Bunting ¹ , Elisa Konofagou ^{1,2} ¹ Biomedical Engineering, Columbia University, New York, New York, USA, ² Radiology, Columbia University, New York, New York, USA	Luciana Cabrelli ¹ , Diego Sampaio ¹ , Joao Uliana ¹ , Alessandro Deana ² , Antonio Cameiro ¹ , Theo Pavan¹ ¹ Department of Physics, University of Sao Paulo, Ribeirão Preto, Brazil, ² Department of Biophotonics, Universidade Nove de Julho, Sao Paulo, Brazil
P1B1-1 Regularized, Weighted Temporal Multiresolution Speckle Tracking of Small Displacements in Ultrasound	P1B1-9 A reliability index of shear wave speed measurement for shear wave elastography	P1B2-5 Evaluation the potential of the hair growth enhancements with ultrasound- mediated minoxidil loaded microbubbles cavitation	P1B3-5 Atlas-based mosaicing of 3D transesophageal echocardiography images of the left atrium	P1B4-5 NIR Photoacoustic Spectroscopy for Continuous Non-Invasive Glucose Monitoring
Peter Hollender ¹ , Vignesh Vudatha ¹ , Gregg Trahey ^{1,2} ¹ Biomedical Engineering, Duke University, Durham, North Carolina, USA, ² Radiology, Duke University Medical Center, Durham, North Carolina, USA	Kiwan Choi ¹ , Junho Park ¹ , Donggoen Kong ¹ , Hyoung-Ki Lee ¹ ¹ Ultrasound R&D Group, Samsung Electronics, Seoul, Korea, Republic of	Ai-ho Liao¹ , Ying-jui Lu ¹ ¹ National Taiwan University of Science and Technology, Taiwan	Harriët W. Mulder ¹ , Josien P.W. Pluim ¹ , Ben Ren ² , Alexander Haak ³ , Max A. Viergever ¹ , Johan G. Bosch ³ , Marijn van Stralen ¹ ¹ Imaging Division, UMC Utrecht, Utrecht, Netherlands, ² Cardiology, Erasmus MC Rotterdam, Rotterdam, Netherlands, ³ Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, Netherlands	Praful Pai¹ , Pradyut Sanki ¹ , Arijit De ¹ , Swapna Banerjee ¹ ¹ Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
P1B1-2 On-Axis Radiation-Force-based quantitative stiffness estimation with a Bayesian displacement estimator	P1B1-10 Pixel-based ultrasound image reconstruction: impact of grid size on signal frequency content	P1B2-6 Quantification of endothelial ανβ3 expression with high frequency ultrasound and targeted microbubbles: in vitro and in vivo studies	P1B3-6 Estimation of Flow Mediated Vasodilatation of the radial artery Andrzej Nowicki ¹ , Robert Olszewski ² , Wojciech	P1B4-6 In Vivo Assessment of Protease Activity in Colorectal Cancer by Using Activatable Molecular Photoacoustic Imaging
Kristy Walsh ¹ , Douglas Dumont ¹ , Mark Palmeri ² , Brett Byram ¹ ¹ <i>bitomedical Engineering, Vanderbilt University,</i> Nashville, TN, USA, ² Biomedical Engineering, Duke University, Durham, NC, USA	Mahdi Bayat ¹ , Alireza Nabavizadeh ^{1,2} , Azra Alizad ^{1,3} , Mostafa Fatemi ¹ ¹ Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA, ² Biomedical Informatics and Computational Biology, University of Minnesota, Rochester, MN, USA, ³ Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA	Verya Daeichin ¹ , Ilya Skachkov ¹ , Judith C. Sluimer ² , Johan G. Bosch ¹ , Klazina Kooiman ¹ , Andrew Needles ³ , Ben Janssen ⁴ , Mat J.A.P. Daemen ⁵ , Antonius van der Steen ^{1.6} , Nico de Jong ^{1.6} ¹ Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands, ² Pathology, CARIM, Maastricht University, Netherlands, ³ FUJIFILM VisualSonics, Inc., Canada, ⁴ Pharmacology, CARIM, Maastricht University, Netherlands, ⁶ Technical University Delft, Netherlands	Secomski ¹ , Marcin Lewandowski ¹ , Michal Byra ¹ ¹ Ultrasound, Institute of Fundamental Technological Research, Warsaw, Poland, ² Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland	Cheng LIU ¹ , Qijin HE ¹ , Yaoheng YANG ¹ , Zhihai QIU ¹ , Yongmin HUANG ¹ , Thomas Ming-Hung LEE ¹ , Lei SUN ¹ ¹ Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, HONG KONG, China, People's Republic of
P1B1-3 Crawling Waves Shear Wave Speed Estimation using Null Space Pursuit and AM-FM demodulation	P1B1-11 A Shear Wave Propagation Tracking Method Based on Modal Assurance Criterion in Acoustic Radiation	P1B2-7 Subharmonic Threshold for Chirp Excitations of High Frequency Contrast Agents	P1B3-7 Electromechanical Eave Imaging of atrial tachycardia and myocardial infarct in vivo: a feasibility study	P1B4-7 Optical-resolution photoacoustic endoscope
Renán Rojas ¹ , Juvenal Ormachea ² , Kevin Parker ² , Benjamin Castañeda¹ ¹ Departamento de Ingeniería, Sección Electricidad y Electrónica, Pontificia Universidad Católica del Perú, Lima, Peru, ³ Department of Electrical & Computer Engineering, University of Rochester, Rochester, New York, USA	Force Impulse Imaging Yang Jiao ¹ , Jie Xu ¹ , Yongjia Xiang ¹ , Tianming Gu ¹ , Yaoyao Cui ¹ ⁴ Suzhou Institute of Biomedical Engineering and Technology, CAS, Suzhou, Jiangsu, China, People's Republic of	John Allen ¹ , Rintaro Hayashi ¹ , Parag Chitnis ² , Jonathan Mamou ³ , Jeffrey Ketterling ³ ¹ Mechanical Engineering, University of Hawaii, Honolulu, Hawaii, USA, ² Department of Bioengineering, George Mason University, Fairfax, Virginia, USA, ³ Riverside Research Institute, New York Clty, New York, USA	Alexandre Costet ¹ , Ethan Bunting ² , Elaine Wan ³ , Elisa Konofagou ^{2,4} ¹ Biomedical Engineering, Columbia University, New York, New York, USA, ² Biomedical Engineering, Columbia University, New York, NY, USA, ³ Medicine Cardiology, Columbia University Medical Center, New York, New York, USA, ⁴ Radiology, Columbia University, New York, NY, USA	Ruimin Chen ¹ , Joon-Mo Yang ² , Chiye Li ² , Bin Rao ² , Junjie Yao ² , Cheng-Hung Yeh ² , Amos Danielli ² , Konstantin Maslov ² , K. Kirk Shung ¹ , Qifa Zhou ¹ , Lihong V. Wang ² ¹ Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA, ² Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA

P1B1-4 Near Field Shear Wave Elasticity Imaging with High Frequency Single Element Transducers Nien-Ching Ho ¹ , Pai-Chi Li ² ¹ Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ² Electrical Engineering, National Taiwan University, Taipei, Taipei, Taiwan, Taiwan	Session P1B2. MCA: Microbubbles and Nanodroplets Chair: Lori Bridal Univ. Pierre and Marie Curie	Session P1B3. MIM: Cardiovascular Imaging and Mechanics Chair: Richard Lopata Technical University Eindhoven	Session P1B4. MPA: Photoacoustics Chair: Richard Lopata Technical University Eindhoven	 P1B4-8 Low power continuous wave photoacoustic microscope for bioimaging applications Sathiyamoorthy Krishnan¹, Michael Kolios¹ ¹Department of physics, Ryerson university, Toronto, Ontario, Canada
P1B1-5 Effects of Aberration in Crawling Wave Sonoelastography Gabriela Torres ¹ , Kevin Parker ² , Roberto Lavarello ³ , Benjamin Castaneda ¹ ¹ Electrical Engineering, Pontificia Universidad Catolica del Peru, Lima, Lima, Peru, ² Electrical and Computer Engineering, University of Rochester, Rochester, USA	P1B2-1 Cosolvent-infused precursor bubbles and droplets for production of ultra-small, ultrasound-activatable, nanoscale perfluorcarbon agents Minseok Seo ¹ , Siqi Zhu ¹ , Ross Williams ¹ , Naomi Matsuura ² ¹ Sumybrook Research Institute, Canada, ² University of Toronto, Canada	P1B3-1 Full-cycle left ventricular segmentation and tracking in 3D echocardiography using active appearance models Marijn van Stralen ¹ , Alexander Haak ² , Esther Leung ³ , Gerard van Burken ² , Clemens Bosch ¹ , Johan Bosch ² ¹ Imaging Division, UMC Utrecht, Utrecht, Netherlands, ² Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, Netherlands, ³ Albert Schweitzer Hospital, Dordrecht, Netherlands	P1B4-1 Optimizing Simultaneous Multispectral Emission Photoacoustics Martin F Beckmann ¹ , Hans-Martin Schwab ¹ , Georg Schmitz ¹ ¹ Chair for Medical Engineering, Ruhr-Universität Bochum, Bochum, Germany	 P1B4-9 Optical and Acoustic Observation of Photodisruption in Two Liquid Perfluorocarbons Induced by Nanosecond Laser Yi Feng¹, Dui Qin¹, Yujing Zong¹, Mingxi Wan¹ ¹The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology,Xi'an Jiaotong University, Xi'an, Shaanxi, China, People's Republic of
 P1B1-6 Acoustic particle palpation – a feasibility study on a novel stress source for elasticity imaging Hasan Koruk^{1,2}, Ahmed El Ghamrawy¹, Mengxing Tang¹, James Choi¹ ¹Department of Bioengineering, Imperial College London, London, United Kingdom,²Mechanical Engineering Department, MEF University, Istanbul, Turkey 	P1B2-2 Influence of the surrounding media on the acoustic behavior of gas vesicle nanostructures at high ultrasound frequencies Emmanuel Cherin ¹ , Raymond W. Bourdeau ² , Melissa Yin ¹ , Mikhail G. Shapiro ² , F. Stuart Foster ¹ ¹ Imaging Research, Sumybrook Research Institute, Toronto, Ontario, Canada, ² Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA	P1B3-2 Optimization-based speckle tracking algorithm for LV strain estimation Hanan Khamis ¹ , Nahum Smirin ¹ , Zvi Friedman ² , Dan Adam ¹ ¹ Department of Biomedical Engineering, Technion- Israel Institute of Technology, Haifa, Israel, ² GE Ultrasound, Tirat Hacarmel, Israel	P1B4-2 Dual-modal photoacoustic ocular imaging Changhui Li ¹ , Ning Wu ² , Xiaoyi Zhu ² ¹ Biomedical Engineering, Peking University, China, People's Republic of ² Peking University, China, People's Republic of	P1B4-10 X-ray acoustic imaging for external beam radiation therapy dosimetry using a commercial ultrasound scanner Diego Sampaio ¹ , Joao Uliana ¹ , Juliana Pavoni ¹ , Leandro Borges ² , Antonio Carneiro ¹ , Theo Pavan ¹ ¹ Department of Physics, University of Sao Paulo, Ribeirão Preto, Brazil, ² Radiotherapy Service, University of Sao Paulo, Ribeirão Preto, Brazil
 P1B1-7 Novel imaging method of continuous shear wave by ultrasonic color flow imaging Yoshiki Yamakoshi¹, Atsushi Yamamoto², Yasushi Yuminaka¹, Naoki Sunaguchi¹ ¹Grad. School of Science and Technology, Gunma University, Kiryu, Japan, ²Department of Orthopaedic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Japan 	P1B2-3 Nonlinear Acoustic Properties Characterization of Nano Size Gas Vesicles Yaoheng Yang ¹ , Yongmin Huang ¹ , Zhihai Qiu ¹ , Cheng Liu ¹ , Jiyan Dai ³ , Lei Sun ¹ ¹ Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, ² Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong	P1B3-3 Tracking quality in plane-wave versus conventional cardiac ultrasound: a preliminary evaluation in-silico based on a state of the art simulation pipeline Martino Alessandrini ¹ , Brecht Heyde ¹ , Ling Tong ¹² , Olivier Bernard ³ , Jan D'hooge ¹ ¹ Cardiovascular Imaging and Dynamics, KU Leuven, Leuven, Belgium, ² Center for Biomedical Imaging Research, Dept. of Biomedical Engineering, Tsinghua University, China, People's Republic of. ³ CNRS UMR 5220; INSERM U1044; Université Lyon 1; INSA Lyon, Lyon, France	 P1B4-3 Photoacoustic imaging of human inflammatory arthritis Xueding Wang¹, Janggun Jo², Guan Xu³, Sheeja Francis³, April Marquardt³, Jie Yuan⁴, Gandikota Girish³ ¹Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA, ²Radiology, University of Michigan, USA, ⁴Nanjing University, USA 	Session P1B5. MTH: Ultrasound-Mediated Agent Delivery Chair: John Hossack Univ. of Virginia

8:00 am - 5:00 pm	Ро	4th floor		
 P1B5-1 PET and fluorescence imaging demonstrate nanoparticle delivery and accumulation in a mouse breast tumor model using microbubbles-mediated ultrasound treatment Josquin Foiret¹, Hua Zhang¹, Lisa M. Mahakian¹, Sara M. Tam¹, Jai Woong Seo¹, Katherine W. Ferrara¹ ¹Department of Biomedical Engineering, University of California, Davis, USA 	Session P1B6. MTC: Soft Tissue Characterization Chair: Lori Bridal Univ. Pierre and Marie Curie	 P1B6-8 Feasibility of acoustic evaluation of thermal lesions at bone-soft tissue interface of an ex vivo bovine bone exposed to high-intensity focused ultrasound Siyuan Zhang¹, Zhiwei Cui¹, Lei Zhang¹, Xingguang Zhu¹, Tianqi Xu¹, Supin Wang¹, Mingxi Wan¹ ¹Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China, People's Republic of 	Session P1B7. MBF: Flow Estimation Strategies: From 1D to 3D Chair: Jørgen Jensen Technical University of Denmark	 P1B7-8 In-vivo High Dynamic Range Vector Flow Imaging Carlos Armando Villagómez Hoyos¹, Matthias E Stuar¹, Jørgen Arendt Jensen¹ ¹Technical University of Denmark, Denmark
P1B5-2 Feasibility of Ultrasound Assisted Drug Delivery (UADD) via Noninvasive High Frequency Intense Therapy Ultrasound Michael Slavton ¹ , Paul Jacger ²	P1B6-1 Evaluation of ultrasound B-mode images of liver fibrosis using fibrotic probability image based on multi-Rayleigh model	P1B6-9 High-Resolution Strain and Strain Rate Imaging of Adult Zebrafish Myocardium Chen Ho-Chiang ¹ , Chih-Chung Huang ¹	P1B7-1 Real-time pulse compression in multigate spectral Doppler imaging Alessandro Ramalli ¹ , Alessandro Dallai ¹ , Enrico Boni ¹ , Francesco Guidi ¹ , Stefano Ricci ¹ , Piero	P1B7-9 3-D Vector Flow Estimation with Row-Column Addressed Arrays Simon Holbek ¹ , Thomas Lehrmann Christiansen ² , Morten Fischer Rasmussen ¹ , Matthias Bo Stuart ¹ ,
¹ Guided Therapy Systems, Mesa, AZ, USA, ² Ardent Sound, Inc., Mesa, AZ, USA	Shohei Mori ¹ , Shinnosuke Hirata ¹ , Tadashi Yamaguchi ² , Hiroyuki Hachiya ¹ ¹ Tokyo Institute of Technology, Tokyo, Japan, ² Chiba University, Chiba, Japan	¹ Department of Biomedical Engineering, National Cheng Kung University, Taiwan	Tortoli ¹ ¹ Information Engineering Department, University of Florence, Firenze, Italy	Erik Vilain Thomsen ² , Jørgen Arendt Jensen ¹ ¹ Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark, ² Department of Micro- and Nanotechnology, Technical University of Denmark Lyngby, Denmark
P1B5-3 Efficient generation of reactive oxygen species sonochemically generated by cavitation bubbles	P1B6-2 Backscatter coefficient estimation from human thyroids in vivo	P1B6-10 Relation between Speed of Sound Measured by Using Ultrasound and Magnetic Resonance Images and Elasticity in Tissue-Engineered Cartilage	P1B7-2 A robust spectral envelope detection algorithm for automated blood flow measurements	P1B7-10 Velocity vector in three dimensions using a high-frame-rate dual-array setup
Jun Yasuda ¹ , Shin Yoshizawa ¹ , Shin-ichiro Umemura ² ¹ Department of Communications Engineering, Tohoku. Univ., Sendai, Japan, ² Department of Biomedical Engineering, Tohoku. Univ., Sendai, Japan	Yamamoto ⁷ , Roberto Lavarello¹ ¹ Departamento de Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru, ² Departmento de Radiología, Clínica Centenario Peruano Japonesa, Pueblo Libre, Lima, Peru	Naotaka Nitta ¹ , Masaki Misawa ¹ , Koji Hyodo ¹ , Yoshio Shirasaki ¹ , Kazuhiko Hayashi ¹ , Kazuhiro Homma ¹ , Tomokazu Numano ² ¹ National Institute of Advanced Industrial Science and Technology (AIST), Japan, ² Tokyo Metropolitan University, Japan	Aditi Kathpalia ^{1,2} , Yücel Karabiyik ² , Bente Simensen ³ , Eva Tegnander ^{3,4} , Sturla Eik-Nes ^{3,4} , Hans Torp ² , Ingvild Kinn Ekroll ^{2,5} , Gabriel Kiss ² ¹ School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India, ² Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway, ³ National Center for Fetal Medicine (NCFM), St. Olavs Hospital, Trondheim, Norway, ⁴ Department of Laboratory Medicine, Children's and Women's Health (LBK), NTNU, Trondheim, Norway, ⁵ St. Olavs Hospital, Trondheim, Norway	Pieter Kruizinga ^{1,2} , Hendrik J Vos ^{1,2} , Johannes G Bosch ¹ , Antonius FW van der Steen ^{1,2} , Nico de Jong ^{1,2} ¹ Thorax Center - Biomedical Engineering, Erasmu Medical Center, Rotterdam, Netherlands, ² Faculty Applied Sciences - Acoustical Wavefield Imaging, Delft University of Technology, Delft, Netherlands
P1B5-4 Uptake and Cellular Recovery Mechanisms in Microbubble-enhanced Ultrasound Delivery of Nanoparticles for Cancer Therapy	P1B6-3 Correcting the influence of tissue attenuation on Nakagami distribution shape parameter estimation	P1B6-11 Activation of Mechanosensitive Transcription Factors in murine C2C12 myoblasts by Focused Low-Intensity Pulsed Ultrasound (FLIPUS).	P1B7-3 Contrast-based Transient Flow Vector Distribution in Arterial Stenosis based on Plane Wave Bubble Wavelet Imaging and Modified Optical Flow Method	P1B7-11 3D Ultrafast Vector Doppler Imaging for in vivo Complex Flow Quantification
Lee Terron ¹ , Maria De Scrilli ^{1,2} , Julien Reboud ¹ , Catherine Berry ³ , Helen Mulvana ¹ ¹ School of Engineering, University of Glasgow, Glasgow, United Kingdom, ² Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Piedmont, Itady, ² Centre for Cell Engineering, University of Glasgow, Glasgow, United Kingdom	Michal Byra ¹ , Andrzej Nowicki ¹ , Hanna Piotrzkowska-Wroblewska ¹ , Katarzyna Dobruch- Sobczak ^{1,2} , Jerzy Litniewski ¹ ¹ Ultrasound Department, Institute of Fundamental Technological Research PAS, Warsaw, Poland, ² Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Poland	Regina Puts¹ , Paul Rikeit ² , Karen Ruschke ² , Soyoung Hwang ³ , Petra Knaus ^{1,2} , Kay Raum ¹ ¹ Berlin-Brandenburg School for Regenerative Therapies, Charite Universitate Berlin, Berlin, Germany, ² Biochemistry, Freie Universitate Berlin, Berlin, Germany, ¹ Department of Biotechnology, Technische Universitate Berlin, Berlin, Germany	Diya Wang ¹ , Bowen Jing ¹ , Jinjin Wan ¹ , Yingjie Jia ¹ , Yu Zhang ¹ , Mingxi Wan ¹ ¹ The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi an Jiaotong University, Xi an, Shaanxi, China, People's Republic of	Mafalda Correia ¹ , Jean Provost ¹ , Mickaël Tanter Mathieu Pernot ¹ ¹ Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Paris 7, Paris, France

P185-5 Enhanced transdermal drug delivery with low frequency, low intensity (20 kHz, 100 mW/cm2) ultrasound exposure: In vivo feasibility study Gadi Cohen ¹ , Hiba Natsheh ¹ , Philip Lazarovici ¹ , Elka Touitou ¹ , Christopher Bawiec ² , Youhan Sunny ² , Melissa A. Lerman ³ , Michael Neidrauer ² , Leonid Zubkov ² , W. Andrew Berger ⁴ , Peter A. Lewin ² ¹ Hebrew University Jerusalem, Israel, ² Drexel University, USA, ² Children's Hospital of Pennsylvania, USA, ⁴ University of Scranton, USA	 P1B6-4 Variation of longitudinal strain along the arterial wall adjacent to the asymptomatic carotid plaque Spyretta Golemati¹, Symeon Lehareas¹, Aimilia Gastounioti², Konstantina Nikita², Achilles Chatziioannou¹, Despina Perrea¹ ¹Medical School, National Kapodistrian University of Athens, Athens, Greece, ²Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece 	 P1B6-12 The measurement of acoustic impedance of the cells cultured with five kinds of the fatty acid Kazuyo Ito¹, Kenji Yoshida², So Irie¹, Jonathan Mamou³, Hitoshi Maruyama⁴, Tadashi Yamaguchi² ¹Graduate School of Engineering, Chiba University, Chiba, Japan, ²Center for Frontier Medical Engineering, Chiba University, Chiba, Japan, ³Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA, ⁴Graduate School of Medicine, Chiba University, Chiba, Japan 	 P187-4 Robust blood velocity estimation using point-spread-function-based beamforming and multi-step speckle tracking Anne E.C.M. Saris¹, Maartje M. Nillesen¹, Stein Fekkes¹, Hendrik H.G. Hansen¹, Chris L. de Korte¹ ¹Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, Netherlands 	P1B7-12 High frame rate 3D blood speckle tracking of intracardiac flows Morten Wigen ¹ , Jakob Høgenes ¹ , Joris van Cauwenberge ² , Sten Roar Snare ³ , Patrick Segers ² , Solveig Fadnes ¹ , Abigail Swillens ² , Lasse Løvstakken ¹ ¹ Norwegian University of Science and Technology, Norway, ² Ghent University, Belgium, ³ University of Oslo, Norway
 P1B5-6 Echogenic liposome as a carrier of siRNA for sonoporation: an alternative microbubble for sonoporation Jingam Park¹, Donghee Park², Unchul Shin¹, Jungwoo Son¹, Jinho Kim¹, Ohrum Cha¹, Yunsun Lee¹, Sangwoo Lee¹, Chul-woo Kim², Jongbum Seo¹ ¹Department of Biomedical engineering, Univ. Yonsei, Wonju, Gangwon, Korea, Republic of Scoul Autional University College of Medicine, Korea, Republic of 	P1B6-5 Assessment of Transmural Myocardial Orientation Using Nakagami Imaging in a Phased Array Configuration Xue Yu¹ , Wei-Ning Lee ^{1,2} ¹ Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, ² Medical Engineering Programme, University of Hong Kong, Hong Kong	P1B6-13 Correction of scatterer-diameter and acoustic-concentration estimates in saturated high-frequency ultrasound signals acquired from cancerous human lymph nodes Kazuki Tamura ¹ , Jonathan Mamou ² , Alain Coron ³ , Kenji Yoshida ⁴ , Tadashi Yamaguchi ⁴ , Ernest Feleppa ² 'Graduate School of Engineering, Chiba University, Japan, 'Lizzi Center for Biomedical Engineering, Riverside Research, USA, ³ Laboratoire d UPMC Univ Paris 06, CNRS, INSERM, France, ⁴ Center for Frontier Medical Engineering, Chiba University, Japan	 P1B7-5 Two Dimensional Blood Velocity Estimation Using High Frame Rate Echocardiography with Transverse Oscillation Approach Hiroki Takahashi¹, Hideyuki Hasegawa¹ ¹Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan 	Session P1B8. MSD: Implementation of Novel Ultrasound Methods Chair: Massimo Mischi Eindhoven University of Technology
P1B5-7 Passive delivery of liposomes with different sizes to the mouse brain after blood brain barrier opening induced by focused ultrasound with microbubbles Jinxuan Guo ¹ , Gaoshu Chen ¹ , Jian Chen ² , Chien Ting Chin ¹ , Yanyan Suo ³ , Yuanyuan Shen¹ ¹ Department of Biomedical Engineering, Shenzhen University, Shenzhen, Guang Dong, China, People's Republic of, ² School of pharmacy, Shanghai Jiaotong University, Shanghai, China, People's Republic of, ³ Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China, People's Republic of	 P1B6-6 Experimental estimation of effective scatterer diameters from physical phantoms using autoregressive spectral analysis Julius Diestra¹, Roberto Lavarello¹ ¹Departamento de Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru 	 P1B6-14 A New Tissue-mimicking Material for Phantoms Kazuishi Sato¹, Tomoji Yoshida¹, Toshio Kondo¹, Masahiko Taniguchi², Kazuhiro Yasukawa² 'Tokushima Bunri University, Sanuki, Kagawa, Japan, ²Takiron Co., Ltd., Kobe, Japan 	P187-6 High Frame Rate Vector Velocity Estimation using Plane Waves and Transverse Oscillation Jonas Jensen ¹ , Matthias Bo Stuart ¹ , Jørgen Arendt Jensen ¹ ¹ Dept. of Elect. Eng, Technical University of Denmark, Kgs. Lyngby, Denmark	 P1B8-1 Real-time dynamic scheduling based adaptive ultrasound sequence programming for research and rapid prototyping Richard Tobias¹, Gary Yi Hou¹, Ashish Parikh¹ ¹Cephasonics, Santa Clara, California, USA
 P1B5-8 The study of targeted delivery of microbubbles binding GDNF through the blood-brain barrier by MRI-guided focused ultrasound on treatment of addiction Feng Wang¹, Xiaojian Jia², Yu Shi³, Li Liu³, Azhen Hu¹, Yun Chen³ ¹Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, China, People's Republic of, ²IBiomedical Research Institute, Shenzhen PKU-HKUST Medical Center, China, People's Republic of, ⁵Department of Ultrasound, Peking University Shenzhen Hospital, China, People's Republic of 	 P1B6-7 A Technique for Mapping Shear Wave Velocity and Attenuation from the Two-Dimensional Fourier Space Ivan Nenadic¹, Bo Qiang¹, Matthew Urban¹, James Greenleaf¹ ¹Mayo Clinic, USA 	 P1B6-15 Differentiation of normal tissue and tissue lesions using statistical properties of backscattered ultrasound in breast Andrzej Nowicki¹, Hanna Piotrzkowska- Wroblewska¹, Katarzyna Dobruch-Sobczak², Jerzy Litniewski¹, Barbara Gambin¹, Michal Byra¹, Eleonora Kruglenko¹ ¹Ultrasound, Institute of Fundamental Technological Research, Warsaw, Poland,²Maria Skłodowska-Curie Memorial, Cancer Center and Institute of Oncology, Warsaw, Poland 	P1B7-7 Multi-angle imaging for robust vector Doppler and coherent compounding Ingvild Kinn Ekroll ^{1,2} , Jørgen Avdal ¹ , Abigail Swillens ³ , Hans Torp ¹ , Lasse Løvstakken ¹ ¹ Norwegian University of Science and Technology, Norway, ² St Olav's Hospital, Norway, ³ Ghent University, Belgium	 P1B8-2 Newton's Method based Self Calibration for a 3D Ultrasound Tomography System Wei Yap Tan¹, Till Steiner², Nicole Ruiter¹ Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Eggenstein- Leopoldshafen, Germany,²Pepperl+Fuchs GmbH, Mannheim, Germany

8:00 am - 5:00 pm	Po	4th floor		
 P1B8-3 A Study of the Driving Circuit for Array Transducer Considering the Impedance Properties Hayato JIMBO¹, Kota GOTO¹, Shin YOSHIZAWA¹, Shinnichiro UMEMURA¹ ¹Tohoku university, Sendai, Miyagi, Japan 	Session P2B1. Signal Processing NDE Methods Chair: Erdal Oruklu Illinois Institute of Technology	Session P2B2. Wave Propagation Modeling Chair: Walter Arnold Saarland University	P3B1-2 Controllable generation of acoustical vortices with sparse sources Haixiang Zheng¹ , Qingyu Ma ¹ , Dong Zhang ² ¹ School of Physics and Technology, Nanjing Normal University, Nanjing, Jiangsu, China, People's Republic of Zhatiute of Acoustics, Nanjing University, Nanjing, Jiangsu, China, People's Republic of	 P3B2-5 Design and characterization of 3D printed phononic crystals for sub-MHz ultrasound manipulation Stefano Laureti^{1,2}, Omololu Akanji¹, Lee Davis¹, Marco Ricci², Simon Leigh¹, David Hutchins¹ ¹University of Warwick, United Kingdom, ²Università degli studi di Perugia, Italy
P188-4 Method for Generating Cell Aggregates using Ultrasonic Standing Wave Trapping in a Disposable Capsule Yuta Kurashina ¹ , Kenjiro Takemura ¹ , Shogo Miyata ¹ , James Friend ² ¹ Mechanical Engineering, Keio University, Yokohama, Kanagawa, Japan, ² Mechanical and Aerospace Engineering, University of California- San Diego, San Diego, California, USA	 P2B1-1 A pulse compression procedure for the measurement and characterization of Non-linear systems based on Exponential Chirp signals. Pietro Burrascano¹, Stefano Laureti^{1,2}, David Hutchins², Marco Ricci¹, Luca Senni¹ ¹Department of Engineering, Università degli studi di Perugia, Polo Scientifico Didattico di Terni, Italy, ²University of Warwick, United Kingdom 	P2B2-1 Acoustic Imaging of the Circular Wedge-like Acoustic Waveguides Tai-Ho Yu¹ ¹ National United University, Taiwan	 P3B1-3 Transverse Manipulation of Microbubbles using Acoustic-Vortex Tweezers Wei Chen Lo¹, Shih Tsung Kang¹, Chih Kuang Yeh¹ ¹Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan 	 P3B2-6 Anchor loss reduction of quartz resonators utilizing phononic crystals Yung-Yu Chen¹, Yan-Ruei Lin¹, Tsung-Tsong Wu², Shih-Yung Pao³ ¹Department of Mechanical Engineering, Tatung University, Taiwan, ²Institute of Applied Mechanics, National Taiwan University, Taiwan, ³TXC Corporation, Taiwan
P1B8-5 Cell manipulation by using natural vibration of a cell culture substrate Chikahiro Imashiro ¹ , Yuta Kurashina ¹ , Kenjiro Takemura ¹ , Shogo Miyata ¹ , Jun Komotori ¹ ¹ Mechanical engineering, Keio University, Yokohama, Kanagawa, Japan	 P2B1-2 Visualization of Defects in Steel Billet using Back Propagation of Scattered Waves Koichi Kakuma¹, Koichi Mizutani², Naoto Wakatsuki² ¹College of Engineering Systems, School of Science and Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan,²Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki, Japan 	 P2B2-2 Hybrid MM-MOC-based Numerical Simulation of Acoustic Wave Propagation with Non-uniform Grid and Perfectly Matched Layer Absorbing Boundaries Yuta Matsumura¹, Kan Okubo¹, Norio Tagawa¹, Takao Tsuchiya², Takashi Ishizuka³ 'Tokyo Metropolitan University, Japan, ²Doshisha University, Japan, ³Shimizu Corporation, Japan 	 P3B1-4 Spatial selective trapping of microparticles using a quasi-periodic phononic crystal plate Chen Wang^{1,2}, Feiyan Cai², Li Fei², Long Meng², Yan Kang¹, Hairong Zheng² ¹Sino-Dutch Biomedical and Information Engineering, Northeastern University, China, People's Republic of ⁵Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, China, People's Republic of 	<i>P3B2-7</i> Lowering diffraction of surface acoustic waves by phononic crystals Jia-Hong Sun ¹ , Yuan-Hai Yu ¹ ¹ Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
 P1B8-6 A Real-time Realization of the Automatic B-mode Image Optimization on a Smart Mobile Device for Point-of-Care Ultrasound Imaging JeeHoo Kim¹, Kwanghyun Park¹, Ilseob Song¹, Yangmo Yoo^{1,2} Jetertonic Engineering, Sogang University, Seoul, Korea, Republic of,²Interdisciplinary Program of Integrated Biotechnology, Sogang University, Korea, Republic of 	 P2B1-3 Feature extraction for robust impact damage classification of CFRP plates using ultrasonic signals Juan M. Soto¹, Antonio M. Peinado¹, Ángel M. Gómez ¹, Nicolas Bochud¹ ¹Teoría de la Señal, Telemática y Comunicaciones, University of Granada, Granada, Spain 	 P2B2-3 Backward guided modes with double zero-group-velocity points in liquid- filled pipes Weijun lin¹, Hanyin Cui¹ ¹State Key Laboratory of Acoustics, Institute of Acoustics Chinese Academy of Sciences, beijing, China, China, People's Republic of 	Session P3B2. Phononics II Chair: Anne Bernassau Heriot-Watt University	Session P4B1. Acoustic Simulation & Modeling Chair: Karl Wagner TDK Corporation

 P188-7 Speed-up of acoustic simulation techniques for 2D sparse array optimization by simulated annealing Emmanuel Roux^{1,2}, Alessandro Ramalli², Piero Tortoli², Christian Cachard¹, Marc Robini¹, Hervé Liebgott¹ ¹CREATIS, Université de Lyon, CNRS UMR 5220, INSERM U1044, Université Claude Bernard Lyon 1, INSA-Lyon, Villeurbanne, France, ²Ingenieria dell'informazione, Università degli studi di Firenze, Firenze, Italy 	P2B1-4 Ultrasonic Chirplet Echo Parameter Estimation using Time-Frequency Distributions Pramod Govindan ¹ , Alireza Kasaeifard ¹ , Jafar Sanile ¹ ¹ Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA	 P2B2-4 An Optimized Guided Waves' Focus Method to Eliminate the Effect of Dispersion: Theoretical and Experimental Research FuLi Xie¹, Shouguo Yan¹, Mingfei Cai¹, Han Dong¹, Bixing Zhang¹, Junjie Gong¹ ¹State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China, People's Republic of 	<i>P3B2-1</i> Coupling and quality factor estimation of pillar resonators on a surface Vincent Laude ¹ , Lyes Djoumi ¹ , Sarah Benchabane ¹ ' <i>FEMTO-ST / CNRS, Besancon, France</i>	P4B1-1 Numerical-analytical calculation of the maximum excitation current of precision quartz resonators. Alaxandr Lepetaev ¹ , Anatoly Kosykh ¹ ¹ Redioelectronic, Omsk State Technical University, Omsk, Russian Federation
 P188-8 Development of an Acoustic Based Sensing System for Medical Ultrasound Image Simulator Bo-Heng Chen¹, Kai-Sheng Heish², Chih-Chung Huang¹ ¹Department of Biomedical Engineering, National Cheng Kung University, Taiwan,²Kaoshiung Chang Geng Memorial Hopital, Taiwan 	P2B1-5 Sparse Deconvolution of Ultrasound NDE Echoes Accounting for Pulse Variance Ramazan Demirili ¹ , Pramod Govindan ² , Jafar Sanile ² ¹ Center for Advanced Communications, Villanova University, Villanova, Pennsylvania, USA, ² Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA	P2B2-5 Anomalous dispersion of Stoneley waves in fluid-filled boreholes Weijun lin ¹ , Hanyin Cui ¹ ¹ State Key Laboratory of Acoustics, Institute of Acoustics Chinese Academy of Sciences, beijing, China, China, People's Republic of	<i>P3B2-2</i> Focalization of surface acoustic waves through a gradient index lens Bernard Bonello ¹ , Jinfeng Zhao ² , Olga Boyko ² ¹ INSP, CNRS / Paris University, Paris, France, ² INSP, Paris University, Paris, France	 P4B1-2 Optimization of Modified Hanma- Hunsinger Cell Geometry for the Design of High Performance SAW Filters Pierre Dufilie¹, Pascal Ventura², Frederic Hecht³ ¹Phonon Corp, Simsbury, CT, USA, ²Laboratoire LEM3, Université de Lorraine, Metz, France, ³Laboratoire Jacques Louis Lions, Universite Pierre et Marie Curie, Paris, France, Metropolitan
P1B8-9 A New 2D Shear Wave Imaging System for Ultrasound Elastography Weibao Qiu ¹ , Congzhi Wang ¹ , Yang Xiao ¹ , Ming Qian ¹ , Hairong Zheng ¹ ¹ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China, People's Republic of	P2B1-6 Singular spectrum analysis for trend extraction in ultrasonic backscattered echoes Yufeng Lu ¹ , Jafar Sanile ² ' Electrical and Computer Engineering, Bradley University, Peoria, USA, ² Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, USA	Session P3B1. Acoustic Tweezers and Particle Manipulation II Chair: Anne Bernassau Heriot-Watt University	P3B2-3 Molecular dynamics simulation of nonlinear waves in granular media Jia Yang ¹ , David Hutchins ¹ , Lolu Akanji ¹ , Peter Thomas ¹ , Lee Davis ¹ , Steven Freear ² , Sevan Harput ² , Nader Saffari ³ , Pierre Gelat ³ 'School of Engineering, The University of Warwick, Coventry, West Midlands, United Kingdom, ² The University of Leeds, United Kingdom, ³ University College London, United Kingdom	 P4B1-3 Temperature compensation of the AIN Lamb Wave Resonators utilizing the S1 mode Jie Zou¹, Albert P. Pisano² ¹Mechanical Engineering, University of California, Berkeley, CA, USA, ²University of California, San Diego, CA, USA
P1B8-10 Assessment of the performance of an ultrasonic biopsy needle Andrew Mathieson ¹ , Robert Wallace ² , Rebecca Cleary ¹ , Hamish Simpson ² , Margaret Lucas ¹ ¹ School of Engineering, University of Glasgow, United Kingdom, ² School of Clinical Sciences, University of Edinburgh, United Kingdom	P2B1-7 Fast total focusing method for ultrasonic imaging Ewen Carcreff ¹ , Dominique Braconnier ¹ , Gavin Dao ² ¹ The phased array company, West Chester, Ohio, USA, ² AOS NDT, Cincinnati, Ohio, USA	 P3B1-1 Tangential Streaming Analysis on Ultrasonically Levitated Droplet through the Boundary Layer Approximation with Moving Particle Semi-implicit and Distributed Point Source Method Yuji Wada¹, Kohei Yuge¹, Hiroki Tanaka², Kentaro Nakamura² ¹Faculty of Science and Technology, Seikei University, Musashino, Japan, ²Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, Japan 	P3B2-4 Effect of periodic patterned ZnO sensing film on a CO SAW resonator sensor Tsung-Tsong Wu ¹ , Jia-Wei Luo ¹ , Lu-Chung Kuo ¹ 'Institute of Applied Mechanics, National Taiwan University, Taiwan	 P4B1-4 Thin Plate Model for Transverse Mode Analysis of Surface Acoustic Wave Devices Gongbin Tang^{1,2}, Tao Han¹, Jing Chen¹, Tatsuya Omori², Ken-ya Hashimoto² ¹School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China, People's Republic of, ²Graduate School of Engineering, Chiba University, Chiba, Chiba, Japan

8:00 am - 5:00 pm	Po	ster Friday, October 23, 20	015	4th floor
P4B1-5 Simulation of First Shear Horizontal Mode Plate Wave in LiNbO3 Showing 20 km/s Phase Velocity Michio Kadota ¹ , Shuji Tanaka ¹ , Tetsuya Kimura ² ¹ Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan, ² Telecommunication Devision, Murata Manufacturing Co. Ltd., Yasu, Shiga, Japan	 P5B1-1 Accurate performance evaluation of high frequency CMUT arrays using a nonlinear model Evren F. Arkan¹, Sarp Satir¹, F. Levent Degertekin¹ ¹G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 	P5B1-9 Performance comparison of acoustic lens materials for Capacitive Micromachined Ultrasonic Transducers: simulation study Jin Ho Chang ^{1,2} , Sung Ho Kim¹ ¹ Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Korea, Republic of, ² Electronic Engineering, Sogang University, Seoul, Korea, Republic of		
Session P4B2. Sensors & Applications II	P5B1-2 Mutual Radiation Impedance for Modeling of Multi-Frequency CMUT Arrays	<i>P5B1-10</i> Comparison of Simulation Models for Electrical Characteristics of CMUT		
Chair: Natalya Naumenko National University of Science and Technology	Mohammad Maadi ¹ , Ryan Chee ¹ , Roger Zemp ¹ ¹ Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada	Markus Klemm¹ , Anartz Unamuno ¹ ¹ Fraunhofer IPMS, Germany		
P4B2-1 Measurement of vibrating frequency of a cantilever using low frequency impedance-loaded SAW sensor Hiromitsu Hamashima ¹ , Jun Kondoh ¹ ¹ Shizuoka University, Hamamatsu-shi, Japan	P5B1-3 Electrical Impedance Matching of CMUT Cells Mohammad Maadi¹ , Roger Zemp ¹ ¹ Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada	Session P5B2. Applications of CMUTs Chair: Michael Fink Friedrich-Alexander-Universität Erlangen- Nuremberg		
P4B2-2 Continuous Temperature Monitoring Algorithm for SAW Sensors Mykhaylo Yudytskiy ^{1,2} , René Fachberger ¹ ¹ sensideon GmbH, Wels, Austria, ² Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria	P5B1-4 Nonlinear Model with Lumped Parameters for Asymmetric CMUTs Carlos Gerardo ¹ , Edmond Cretu ¹ , Robert Rohling ¹ ¹ Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada	P5B2-1 cMUT technology applied to galvanic isolation : theory and experiments Jacques Heller ¹ , Audren Boulmé ¹ , Daniel Alquier ¹ , Sophie Ngo ¹ , Marie Perroteau ¹ , Dominique Certon ¹ ¹ UMR CNRS 7347 - GREMAN, Université François Rabelais, TOURS, France		

 P4B2-3 Sensitivity improvement of a room- temperature SAW methane sensor incorporating Cryptophane-A film Wen Wang¹, Haoliang Hu¹, Shitang He¹, Yong Pan², Caihong Zhang³, Chuan Dong³ ¹Chinese Academy of Sciences, Institute of Acoustics, Beijing, China, People's Republic of. ²Research Institute of Chemical Defense, China, People's Republic of, ³Shanxi University, Shanxi, China, People's Republic of 	 P5B1-5 Efficient driving conditions of CMUT arrays for conventional and harmonic imaging Anders Lei¹, Søren Elmin Diederichsen¹, Matthias Bo Stuart², Jørgen Arendt Jensen², Erik Vilain Thomsen¹ ¹Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark,²Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Denmark 	 P5B2-2 On-Chip Piezoelectric Polymer Ultrasonic Transceivers for Point-of-Care Testing Chien-Chong Hong¹, Kuan-Wen Chen¹ ¹Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 	
P4B2-4 Surface Acoustic Wave Accelerometer for High-G Applications Dmitry Lukyanov ¹ , Sergey Shevchenko ¹ , Alexander Kukaev ¹ , Khivrich Maria ¹ ¹ Laser Measurement and Navigation Systems, St. Petersburg Electrotechnical University, St. Petersburg, Russian Federation	 P5B1-6 Optimization of the Backside Structures with Wideband Reflectivity Reduction for a CMUT Akifumi Sako¹, Hiroki Tanaka^{1,2}, Yasuhiro Yoshimura², Masahiro Sato¹, Tatsuya Nagata¹ ¹Hitachi Aloka Medical,Ltd., Japan,²Hitachi, Ltd., Japan 	 P5B2-3 CMUT for high sensitivity greenhouse gas sensing Dovydas Barauskas¹, Donatas Pelenis¹, Gvidas Sergalis¹, Gailius Vanagas¹, Marius Mikolajunas¹, Darius Virzonis¹, Jonas Baltrusaitis² ¹Panevezys Faculty of Technologies and Business, Kaunas University of Technology, Panevezys, Lithuania,²Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, USA 	
P4B2-5 SAW force sensor based on reflective delay line quasi-mirror topology Ivan Ancev ¹ , Sergei Bogoslovsky ¹ , Gennadiy Sapozhnikov ¹ , Sergei Zhgoon ² ¹ Joint Stock Company "NPP "Radar mms", Russian Federation, ² National Research University Moscow Power Engineering Institute, Moscow, Russian Federation	P5B1-7 Nonlinear Lumped Modelling of Large-Scale CMUT TOBE Architectures Christopher Ceroici ¹ , Ryan Chee ¹ , Roger Zemp ¹ ¹ Electrical & Computer Engineering, University of Alberta, Edmonton, Canada		
Session P5B1. CMUT Modeling and Design Chair: Michael Fink Friedrich-Alexander-Universität Erlangen- Nuremberg	 P5B1-8 Signal-to-Noise-Ratio Optimization For a CMUT based Medical Ultrasound Imaging System Reza Pakdaman Zangabad¹, Ayhan Bozkurt², Göksenin Yaraloğlu³ ¹Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands, ²Electronics Engineering, Sabanci University, Istanbul, Turkey, ³Electronics Engineering, Ozyegin University, Istanbul, Turkey 		